Academic Editor: Ana Maria
Wesley Bruski Barbero
Medical Student, Harvard Medical School
Corresponding Author: Wesley Bruski Barbero, Pharm Medical Student, Harvard Medical School, Email: wb-barbero@uol.com.br, Ph: 55-49-98418-8853
Citation: Wesley Bruski Barbero (2021) Molecular Geometry in Polymerization Formation. World J Multidiscip Res Rev, 1(1); 1-2.
Copyright: © 2021, Wesley Bruski Barbero. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
ABSTRACT
Polymerization, matrix
determinants, Polymers
The crosslinking agent used
to obtain a MIP (Molecularly Printed Polymer) performs the following three main
functions: control of the morphology of the polymeric matrix (gel-like polymer,
macroporous polymer or microgel powder); stabilization of binding sites capable
of molecular recognition; mechanical stabilization of the polymeric matrix.
None
None
1.
Albeverio S, Hoegh-Krohn R. A Remark on the Connection Batween Stochastic
Jl.1echanics and the Heat Equation. J Phys. 1974;15(10):1745.
2.
Aguirre, Luiz Antonio. Introdução À Identificação de Sistemas . Minas Gerais:
UFMG, 2007.
3.
Ballentine, L.S. The Statistical Interpretation of Quantum Mechanics. Rev Mod
Phys. 1970;42:358.
4.
Boldrini, José Luiz. Álgebra linear. São Paulo: Harba, 1980.
5. Bohm,
D. Causality and Chance in Modern Physics. Routledge & Kegan Paul, LTD.
1967.
6.
Carmen Lys Ribeiro Braga. Notas de Física-Matemática: Equações Diferenciais,
Funções de Green e Distribuições. Editores: Walter F. Wreszinski, Jose F.
Perez, Domingos H. U. Marchetti e João C. A. Barata. Ed. Livraria da Física,
São Paulo. 1a edição, 2006.
7. C.H.
Bennett. Logical reversibility of computation. IBM Journal of Research and
Development. 1973;17:525.
8. Curso
de Física-Matemática, J.C.A. Barata, http://denebola.if.usp.br/~jbarata/Notas_de_aula/
Capítulo 16, Capítulo 19, Capítulo 36, Capítulo 37, Capítulo 38.
9. David
J. Griffits, Mecânica quântica, ed. 2, tradução Lara freitas, (Pearson, São
Paulo).
10.
Díaz, J. L. F. Geração de emaranhamento de polarização entre pares de fótons no
regimede femtossegundos.Dissertação (Mestrado)– Universidade Federalde
Pernambuco. 2014.
11. D.
Deutsch, R. Jozsa. Rapid solution of problems by quantum computation.
Proceedings of the Royal Society A. 1992;43:553.
12. FAS.
Barbosa, AS. Coelho, KN. Cassemiro, P. Nussenzveig, C. Fabre, M. Martinelli,
AS. Villar. Beyond spectral homodyne detection: Complete quantum measurement of
spectral modes of light. Physical Review Letters. 2013;111:200402.
13.
Hänsch, TW, Schawlow A.L. Cooling of gases by laser radiation. Opt Commun.
1975;13:1.
14. H
Jeffreys. Theory of Probability (Oxford University Press, 1998).
15.
Kobayashi K, Ohtsuki, T, Slevin K. Critical exponent for the quantum spin Hall
transition in Z2 Network Model. Phys Rev B, 2011;1:1-5.
16. Kok,
P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod.
Phys., v. 79, n. 1, 2007.
17.
Mandelbrot, Benoit B. The Fractal Geometry of Nature. New York: W. H. Freeman
and Company, 1977.
18. Reed
M., Simon B. M.O. Scully, M.S. Zubairy. Methods of Modern Mathematical Physics
Vol. 1-4, Quantum Optics (Cambridge University Press, 1997).
19.
Parisio, F. Estimating the reduction time of quantum states. Phys Rev A.
2011;84(6).
20. R.
Cleve, A. Ekert, C. Macchiavello, M. Mosca. Quantum algorithms revisited.
Proceedings of the Royal Society A. 1998;454:339.
21.
Stewart, James. Antonio Carlos Moretti. Cálculo, volume 1. São Paulo: Cengage
Learning, 2012.
22.
Varriale, M. C. Transição de localização em potenciais aleatórios com
correlações de longo alcance,. Tese (Doutorado) — UFRGS, Porto Alegre, (1994).
23.
Wegner, F. Electrons in disordered systems. Scaling near the mobility edge
Zeits. Phys B Condens Matt. 1976;25(4)327-337.