Methodology developed to genetically modify lab mice and human cells

Methodology developed to genetically modify lab mice and human cells

Admin on 11 / 02 / 2020 under Cancer news

A method designed to genetically alter laboratory mice can also be used to produce personalised animal models of an aggressive type of malignant brain cancer in children.

 

Methodology developed to genetically modify lab mice and human cells

A method designed to genetically alter laboratory mice can also be used to produce personalised animal models of an aggressive type of malignant brain cancer in children.

 

A rapid method from Cedars-Sinai Medical Center, US has been designed to genetically alter laboratory mice and it can also be used to produce personalised animal models of paediatric glioma, an aggressive type of malignant brain cancer in children.

 

The goal for the method, called mosaic analysis with dual recombinase-mediated cassette exchange (MADR), is to make it easier for laboratories to achieve precise, reliable results when modifying mice for research studies, especially those involving cancers driven by multiple genetic variations. It can also be used to modify patient-derived cells to study diseases in a culture dish.

 

MADR involves inserting a single copy of genetic material into a specific point on a chromosome in the cell of a mouse embryo or newborn mouse. Each genetic alteration, or mutation, can cause a protein to either stop functioning or acquire a new, abnormal function.

Using MADR, scientists were able to introduce both types of mutations into the same mouse.

 

The mutations reproduced the complex gene expression patterns and pathology found in the paediatric glioma tumours of patients who provided the genetic material. Further, MADR was able to accurately model another aggressive type of paediatric brain tumour (ependymoma) using multi-gene fusions that produced cancer-causing fusion proteins. It also targeted the correct tissues, leaving other tissues unaltered.

 

“My hope is that our new method, by modelling the spectrum of heterogeneity of tumours, will help us develop new, more-targeted therapeutics for paediatric glioma – one of the leading causes of cancer deaths in children and young adults,” said Moise Danielpour, MD, associate professor of Neurosurgery at Cedars-Sinai.

 

Joshua Breunig, PhD, assistant professor of Biomedical Sciences at the Board of Governors Regenerative Medicine Institute at Cedars-Sinai added that the study demonstrated that MADR successfully altered not only mouse cells but also human cells that had been modified to include an appropriate recipient site.

Leave a Reply

Your email address will not be published. Required fields are marked *

Recently Published Articles
World Journal of Medical Toxicology and Poisoning

World Journal of Medical Toxicology and Poisoning

World Journal of Medical Toxicology and Poisoning is an International

World Journal of Plant Science & Research Technologies

World Journal of Plant Science & Research Technolo...

World Journal of Plant Science & Research Technologies is an internat

World Journal of Milk and Diary Research

World Journal of Milk and Diary Research

World Journal of Milk and Diary Research is an International open acc

World Journal of Fisheries and Aquaculture

World Journal of Fisheries and Aquaculture

World Journal of Fisheries and Aquaculture is an International open a

Current Trends in Agriculture and Farming

Current Trends in Agriculture and Farming

Current Trends in Agriculture and Farming is an international open ac

World Journal of Biotechnology

World Journal of Biotechnology

World Journal of Biotechnology is an international open access peer r

World Journal of Healthcare Quality and Patient

World Journal of Healthcare Quality and Patient

World Journal of Healthcare Quality and Patient Safety is an internat

World Journal of Epidemiology and Biostatistics

World Journal of Epidemiology and Biostatistics

World Journal of Epidemiology and Biostatistics is a Peer Reviewed Jo

Indexing Partners

image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing

Stay Up to Date