Increased fertility for women with Neanderthal gene, study suggests

Increased fertility for women with Neanderthal gene, study suggests

Admin on 02 / 06 / 2020 under #Karolinska Institute

Source: Karolinska Institute

 

Summary: One in three women in Europe inherited the receptor for progesterone from Neanderthals -- a gene variant associated with increased fertility, fewer bleedings during early pregnancy and fewer miscarriages, according to new research.

 

One in three women in Europe inherited the receptor for progesterone from Neandertals -- a gene variant associated with increased fertility, fewer bleedings during early pregnancy and fewer miscarriages. This is according to a study published in Molecular Biology and Evolution by researchers at the Max Planck Institute for Evolutionary Anthropology in Germany and Karolinska Institutet in Sweden.

 

"The progesterone receptor is an example of how favourable genetic variants that were introduced into modern humans by mixing with Neandertals can have effects in people living today," says Hugo Zeberg, researcher at the Department of Neuroscience at Karolinska Institutet and the Max Planck Institute for Evolutionary Anthropology, who performed the study with colleagues Janet Kelso and Svante Pääbo.

 

Progesterone is a hormone, which plays an important role in the menstrual cycle and in pregnancy. Analyses of biobank data from more than 450,000 participants -- among them 244,000 women -- show that almost one in three women in Europe have inherited the progesterone receptor from Neandertals. Twenty-nine percent carry one copy of the Neandertal receptor and three percent have two copies.

 

Favourable effect on fertility

 

"The proportion of women who inherited this gene is about ten times greater than for most Neandertal gene variants," says Hugo Zeberg. "These findings suggest that the Neandertal variant of the receptor has a favourable effect on fertility."

 

The study shows that women who carry the Neandertal variant of the receptor tend to have fewer bleedings during early pregnancy, fewer miscarriages, and give birth to more children. Molecular analyses revealed that these women produce more progesterone receptors in their cells, which may lead to increased sensitivity to progesterone and protection against early miscarriages and bleeding.

 

The research was supported by the NOMIS Foundation and the Max Planck Society

Leave a Reply

Your email address will not be published. Required fields are marked *

Recently Published Articles
World Journal of Medical Toxicology and Poisoning

World Journal of Medical Toxicology and Poisoning

World Journal of Medical Toxicology and Poisoning is an International

World Journal of Plant Science & Research Technologies

World Journal of Plant Science & Research Technolo...

World Journal of Plant Science & Research Technologies is an internat

World Journal of Milk and Diary Research

World Journal of Milk and Diary Research

World Journal of Milk and Diary Research is an International open acc

World Journal of Fisheries and Aquaculture

World Journal of Fisheries and Aquaculture

World Journal of Fisheries and Aquaculture is an International open a

Current Trends in Agriculture and Farming

Current Trends in Agriculture and Farming

Current Trends in Agriculture and Farming is an international open ac

World Journal of Biotechnology

World Journal of Biotechnology

World Journal of Biotechnology is an international open access peer r

World Journal of Healthcare Quality and Patient

World Journal of Healthcare Quality and Patient

World Journal of Healthcare Quality and Patient Safety is an internat

World Journal of Epidemiology and Biostatistics

World Journal of Epidemiology and Biostatistics

World Journal of Epidemiology and Biostatistics is a Peer Reviewed Jo

Indexing Partners

image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing

Stay Up to Date